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Abstract

Consider comparing two independent binomial responses. Our interest is whether
the two binomial parameters are different, and if different, which is larger, and if
larger, by how much. This apparently simple problem was addressed by Fisher in the
1930’s, and has been the subject of many review papers since then. Yet there contin-
ues to be new work on this issue and no consensus solution. Previous reviews have
focused primarily on testing and power, or primarily on confidence intervals, their
coverage, and average length. Here we evaluate both together; we define a frequentist
“method” as a parameter estimate, the p-value of a test and its matching confidence
interval. For focus, we only examine non-asymptotic inferences, so that most of the
methods are valid (i.e., exact) by construction. Within this focus, we review different
methods emphasizing many of the properties and interpretational aspects we desire
from applied frequentist inference: validity, accuracy, good power, equivariance, uni-
fied inferences, coherence, causal interpretation, and parameterization and direction
of effect. We show that no one method can meet all the desirable properties and give
recommendations based on which properties are given more importance.

Keywords: 2 by 2 table, Barnard’s test, Fisher’s exact test, Unconditional exact test
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1 Introduction

Suppose we observe two independent binomial variates with parameters (n1, θ1) and (n2, θ2).

One question we might have is: are θ1 and θ2 equal or not? If we reject the null hypothesis

of equality (or even if we do not), we typically want to estimate how much larger one

θ parameter is than the other. To answer these two questions, the frequentist typically

presents an estimate of the effect, a confidence interval on that effect, and a p-value to test

that there is no effect. For such a simple problem, one might think that by now there is a

consensus method for testing and creating confidence intervals for this problem. But this

is not so. New methods continue to be developed for this problem (see e.g., Lloyd, 2008;

Wang, 2010; Wang and Shan, 2015; Fay et al., 2015), and the closely related problems of

causal inferences from a two-sample randomized experiment with binary responses (Rigdon

and Hudgens, 2015; Ding and Dasgupta, 2016). Many review papers on this problem focus

on testing alone (see Lydersen et al., 2009), or confidence intervals alone (see Fagerland

et al., 2015; Santner et al., 2007). Here we focus on both together.

We define a method as an estimator of a parameter of interest, a confidence interval, and

a p-value function. This approach allows us to compare different methods by examining

not just properties of each component (i.e., comparing powers of different p-value functions

or expected lengths of different confidence intervals), but also to examine properties of

the methods as a whole. For example, within a method we examine inferential agreement

between the p-value function and confidence interval procedure. Additionally, we examine

what directional inferential statements we can make from the method, such as stating that

θ2 is significantly larger than θ1.

Although in some different statistical settings (e.g., two-sample normal problem) the

standard method will automatically give inferential agreement between p-values and con-
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fidence intervals as well as automatically give directional inferential statements, in the

two-sample binomial problem those inferential properties are not automatic. Thus, before

discussing the binomial problem, we first review the two-sample problem with normally

distributed responses with the same variance. We consider the latter problem first, be-

cause there is some consensus that one method (the t-test, and its associated p-value and

confidence interval) is appropriate for this problem. In the normal case, this t-test method

meets some regularity properties that lead to inferences that are intuitive and easy to un-

derstand. Because these properties form the basis for a certain statistical intuition about

how frequentist inferences ought to be, and because the example uses normal distributional

assumptions, we call these properties the “normal intuition”. We will show later how the

normal intuition breaks down for the two-sample binomial problem, although many of the

properties may approximately hold for large samples.

1.1 Background and Notation

Consider a general frequentist problem, where we observe data, x, and denote its random

variable as X. Assume some probability model for X that depends on a parameter vector

θ, but we are interested in a function of θ that returns a scalar, b(θ) = β. We partition the

possible values of θ into two sets, the null hypothesis, Θ0, and the alternative hypothesis,

Θ1.

In this paper, except for Section 7, we consider only three classes of partitions, where

the null and alternative space is defined by β, and separated by a value β0 on the boundary

between the hypotheses. These three classes are two-sided hypotheses,

H0 : β = β0

H1 : β ̸= β0
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or one of the one-sided hypotheses,

Alternative is Less Alternative is Greater

H0 : β ≥ β0 H0 : β ≤ β0

H1 : β < β0 H1 : β > β0.

Let p(x,Θ0) be a p-value associated with the null hypothesis, Θ0. Typically, we assume

a class of hypotheses and write (with a slight abuse of notation) p(x, β0) as a p-value

associated with the null hypothesis indexed by β0. We reject the null hypothesis at level α

if p(x, β0) ≤ α. Following Berger and Boos (1994), we define a p-value procedure as valid

if

Pθ [p(X, β0) ≤ α] ≤ α,

for all α ∈ (0, 1) and all θ ∈ Θ0. The term exact is often used to describe tests that give

valid p-values. For example, Fisher’s exact test and unconditional exact tests. In this

paper, we will follow that convention and make no distinction between the terms exact and

valid. Following Röhmel (2005), we define a p-value procedure as coherent if for every x,

p(x,Θ∗
0) ≤ p(x,Θ0) if Θ

∗
0 ⊆ Θ0.

For the classes of hypotheses above, we can invert the p-value function to get its asso-

ciated 100(1− α)% confidence region,

C(x, 1− α) = {β : p(x, β) > α} . (1)

We define a confidence region as valid if it is guaranteed to have at least nominal coverage

for every θ (and hence every b(θ) = β); in other words,

Pθ [β ∈ C(X, 1− α)] ≥ 1− α.
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Often we use asymptotic methods to create p-values and confidence intervals that are not

valid for finite samples, but approach validity as the sample size gets large. In this paper,

we only consider non-asymptotic methods, and all are valid except the mid-p methods

described in Section 9.

1.2 Standard Frequentist Inference: Normal Intuition

Consider the two-sample problem, where the ath group has na independent and normally

distributed responses, with mean µa and variance σ2. Let θ = [µ1, µ2, σ], and suppose we

are interested in β = b(θ) = µ2−µ1. The t-test is valid for testing the null that β = β0 and

it is the uniformly most powerful (UMP) unbiased test (Lehmann and Romano, 2005, p.

160) for this problem. UMP unbiasedness means that among the class of unbiased tests for

this problem (i.e., tests for which the power for each specific parameter in the alternative

space is always greater than the power for every parameter in the null space), the t-test is

the most powerful test regardless of which θ ∈ Θ1 we measure power.

We study this case first to define “normal intuition” about frequentist inferences. This

normal intuition is a series of properties, that if they are not met, conflict with many

statisticians’ intuitive feeling of how p-values and confidence regions ought to work. Here

are those properties met by the difference in sample means, β̂; the two-sided p-value from

the t-test, p; and the 100(1 − α)% confidence interval on β associated with that p-value,

(L,U).

Reproducibility: Two statisticians applying the method to the same data always get the

same results (as opposed to randomized tests).

Confidence region is an interval: The confidence region created from p through equa-

tion 1 is an interval, meaning it can be written as (L,U) with all values within the
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interval belonging to the confidence region.

Unified Inferences: p ≤ α if and only if the (1−α) confidence interval does not contain

β0. ( This idea is similar to the unified report of Hirji, 2006, p. 77).

Accuracy (of coverage): Taken over repeated applications, the probability that the 100(1−

α)% confidence interval procedure includes β is equal to (1 − α) for all values of β

regardless of the nuisance parameters.

Centrality (of CI): The 100(1− α)% CI is a central one, meaning P [L > β] ≤ α/2 and

P [U < β] ≤ α/2.

One-sided p-value from Two-sided p-value: Half of the two-sided p-value can be in-

terpreted as a one-sided p-value in the apparent direction of the effect. For example,

if β̂ > β0 then we can reject H0 : β ≤ β0 at level p/2.

Directional Coherence (of p-value): The t-test method has “directional coherence”,

where we have expanded the definition of coherence of one-sided p-values to two-sided

p-values with an estimate. Call a two-sided p-value function directionally coherent if

the p-values are decreasing as β0 gets farther from β̂. In other words, directionally

coherent two-sided p-values have p(x, β∗
0) ≤ p(x, β0) when either β∗

0 < β0 < β̂ or

β̂ < β0 < β∗
0 . A two-sided p-value with this property can be interpreted as a coherent

one-sided p-value in the appropriate direction. For example, if β̂ > β0 then we can

reject H0 : β ≤ β0 at level p. (And for the t-test p-value, we can also reject at a level

of p/2.)

Monotonicity (of power): As the sample size increases, there is an increase in power

under any probability model in the alternative hypothesis.
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Nestedness (of CIs): If we had used a larger confidence level, (1−α∗) > (1−α), then the

100(1−α∗)% confidence interval, (L∗, U∗), would completely contain the 100(1−α)%

one, (L,U); in other words, L∗ ≤ L < U ≤ U∗.

1.3 Two-Sample Binomial: Failure of Normal Intuition

Now we turn to the two-sample binomial problem, where X1 ∼ Binomial(n1, θ1) and

independently X2 ∼ Binomial(n2, θ2). Here the parameter of interest is typically one of

three functions of θ = [θ1, θ2]: the difference (βd = θ2 − θ1), the ratio (βr = θ2/θ1), or the

odds ratio (βor = {θ2(1− θ1)} / {θ1(1− θ2)}). In this problem, the inferential methods do

not necessarily follow the properties that we would expect from normal intuition. We list

several examples using several different valid tests, valid confidence intervals, or methods.

Failure of Reproducibility: The uniformly most powerful unbiased (UMPU) test ofH0 :

θ1 ≥ θ2 versus H1 : θ1 < θ2 is a randomized version of a one-sided Fisher’s exact test

(see e.g., Lehmann and Romano, 2005; Finner and Strassburger, 2001). Testing this

hypothesis at the one-sided α = 0.025 level for the data x1/n1 = 1/6 and x2/n2 = 7/9,

the UMPU test rejects 70.3% of the time, and fails to reject 29.7% of the time. So,

provided they are not using the same pseudo-random number generator, there is a

41.7% chance that two researchers applying the UMPU test to those data will have

different accept/reject decisions.

Associated confidence region not an interval: There are two versions of the two-sided

Fisher’s exact test and the most common is the Fisher-Irwin test (default in current

versions of SAS [version 9.4] and R [version 3.3.2]). The test was designed to test

H0 : βor = 1, but it can be generalized to test other null hypotheses. Consider the

data x1/n1 = 7/262 and x2/n2 = 30/494 (see Fay, 2010a, Supplement, Section 3.1).
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The two-sided p-value for testing the H0 : βor = 1 is p = 0.04996, which rejects

the null hypothesis at the α = 0.05 level. If we slightly change the null and test

H0 : βor = 0.99, we get p = 0.05005, and we fail to reject. But counter-intuitively,

if we change the null the other way and test H0 : βor = 1.01, we also fail to reject,

p = 0.05006. So if we create the 95% confidence region by inverting the p-value

procedure, this region is not contiguous,

C(x, 0.95) = {β : β ∈ (0.177, 0.993) or β ∈ (1.006, 1.014)} .

and includes values of βor both larger and smaller than 1. The cause of this behaviour

is the lack of unimodality of the p-value function; see Figure 1.

Non-unified inferences: If the confidence region is not an interval, we can create a valid

CI by using the interval that covers the whole confidence region. But this will not give

unified inferences. Returning to the Fisher’s exact test confidence region example,

we can create a 95% confidence interval by “filling in the hole” as (0.177, 1.014) to

create the matching confidence interval (see Section 3.1 or Blaker, 2000). In this

case, the two-sided p-value rejects the null that βor = 1 at the 0.05 level, but the

matching 95% confidence interval includes βor = 1. This issue is different from the

non-unified inferences that often occurs by using different methods to calculate p-

values and confidence intervals, which can be quite prevalent in this application. For

example, the default for R (fisher.test in base R, version 3.3.1) and SAS (exact option

in Proc Freq, version 9.4) uses the Fisher-Irwin two-sided p-value, but calculates the

two-sided confidence interval on βor by inverting two one-sided Fisher exact p-values

(see e.g., Fay, 2010a,b).

Imperfect Accuracy of Coverage: Because of discreteness, the valid confidence inter-

val must have coverage larger than the nominal level for some values of θ, in order
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Figure 1: Two-sided Fisher’s exact test (Fisher-Irwin version) p-values by β0 for x1/n1 =

7/262 and x2/n2 = 30/494. Right panel is an enlargement of part of the left panel.

Reference line is 0.05.
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to ensure validity for all values of θ. Unfortunately, the term “exact” is often used

to mean valid, so an “exact” confidence interval may have coverage greater than the

nominal level and not, as the term might imply, have coverage exactly equal to the

nominal level. Section 9 discusses relaxing the requirement of validity in order to

have coverage closer to the nominal level “on average”, slightly greater than nominal

for some parameter values and slightly less for others.

Non-Centrality of Confidence Interval: Although central (1−α) CIs for the binomial

problem are important, much has been written on non-central intervals. Agresti and

Min (2001) showed that by inverting certain two-sided tests, we get smaller confidence

intervals than central ones. For the difference in proportions, this strategy often uses

an unconditional exact (i.e., valid) version of a two-sided score test (see Fagerland

et al., 2015). For x1/n1 = 5/9 and x2/n2 = 7/7 then the difference in proportions

is β̂d = 0.444 with 95% confidence interval using this method equal to (0.005, 0.749)

and the associated two-sided exact p-value for testing βd = 0 giving p = 0.0496.

Because the 95% confidence interval is based on inverting a two-sided test, we cannot

use p/2 = 0.0248 as a one-sided p-value showing that βd > 0 at the 0.025 level. In

fact, to ensure validity, we can only use the two-sided p-value as an upper bound on

that one-sided p-value.

Non-monotonicity of power: Continuing with the previous example (x1/n1 = 5/9 and

x2/n2 = 7/7 using the unconditional exact two-sided score test), if we add one more

observation to group 2 the two-sided p-value increases regardless of whether the extra

observation is a failure (giving x2/n2 = 7/8 and p = 0.172), or success (giving x2/n2 =

8/8 and p = 0.0510) (this example comes from Vos and Hudson, 2008). Thus, it is not

surprising that the power to reject at the two-sided 0.05 level when θ1 = .4 and θ2 = .9
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is higher for n1 = 9, n2 = 7 (power= 61.9%) than for n1 = 9, n2 = 8 (power=53.7%).

Power non-monotonicity can also exist for common one-sided tests. Using a one-sided

Fisher’s exact test at the 0.025 level, the power to reject H0 : βor = 1 when θ1 = 0.01

and θ2 = 0.80 is 71.7% when n1 = n2 = 5, but 63.2% when n1 = n2 = 6.

Non-nesting Confidence Intervals: Wang (2010) proposed a method for constructing

the smallest one-sided confidence interval for the difference of two proportions. Con-

sider x1/n1 = 2/7 and x2 = 2/5. The lower one-sided 95% interval on the difference,

βd, is (−0.467, 1), but the 96% interval by the same method is (−0.442, 1). See

Figure 2.

Non-Coherence: For testing for non-inferiority on a difference in proportions, Chan

and Zhang (1999) recommend the exact unconditional test based on the score test.

Röhmel (2005) give the following virtual example: the proportion of failures on con-

trol is x1/n1 = 130/248 and on new treatment is x2/n2 = 76/170, with the fail-

ure rate slightly lower on new treatment, β̂d = −0.077. If we want to show that

H1 : βd < 0.025 the p-value is p = 0.0226, but if we want to show an even less

stringent margin, H1 : βd < 0.026 the p-value non-intuitively increases to p = 0.0239

(see Figure 3).

For the two-sample binomial problem, many attempts to increase power or get the

smallest width CI result in violations of some of these “normal intuition” properties.

1.4 Outline of Paper

We begin in Section 2 by discussing the choice of effect measure. In Section 3 we define

matched methods, and discuss properties of methods such as unified inferences, and direc-

tionality of inferences. We describe methods for defining valid one-sided decision rules in
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one-sided 95% limit of −0.467, while dotted black lines show one-sided 96% limit of −0.442.
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Sections 4 (unconditional methods) and 5 (conditional methods), including the associated

p-values and CIs. In Section 6 we review the melded confidence intervals of Fay et al.

(2015), which give associated p-values of the null of θ1 = θ2 that match the one-sided con-

ditional method. In Section 7 we talk about equivalence studies and non-inferiority studies.

In Section 8 we discuss non-central confidence intervals and associated tests. In Section 9

we discuss mid-p methods, which are non-asymptotic methods that relax the validity as-

sumption in order to achieve better accuracy. In Section 10 we discuss the computational

aspects of the various methods. In Section 11 we review some recent work on causality

and the two-sample binomial problem, and relate those results to the rest of this paper.

In Section 12 we discuss power and efficiency of methods. In Section 13 we give our final

recommendations.

2 Choosing the Effect Measure

Choosing the effect measure is dependent on the application, so we examine a real appli-

cation to discuss the issues. Coulibaly et al. (2009) studied a parasite called Mansonella

perstans that infects people in parts of Africa. The usual drugs that kill other similar par-

asites had not been working on killing M. perstans. Coulibaly et al. (2009) realized that in

this case there was a symbiotic bacteria, Wolbachia, that helped the M. perstans live. They

suspected that if they gave a common antibiotic, doxycycline, to kill the bacteria, it may

in fact help cure the patient of M. perstans. To study this, some patients were randomized

to the treatment group (received doxycycline) and some to the control group (received no

treatment). There are issues of missing data that we will ignore for simplicity. The results

are that at 12 months x2 = 67 out of n2 = 69 subjects who received doxycycline had cleared

the M. perstans from their blood, while only x1 = 10 out of n1 = 63 who got no treatment

14



cleared the parasite. There are several reasonable choices for how to measure the effect: the

difference in clearance rates, the ratio of clearance rates, the ratio of failures, and the odds

ratio of clearance rates. Although the choice is often dominated by what is most natural

to the intended audience, there are some statistical issues related to this choice.

Without loss of generality, we define the effect measures as measuring how much larger

θ2 is than θ1. The opposite effect can be measured by switching group labels. But we could

also simultaneously switch group labels and switch the responses. If the effect remains

the same after this double switching, we say that the measure has symmetry equivariance.

The measures βd and βor have symmetry equivariance; however, βr does not have it, as

we demonstrate with the example. Let θ̂2 = 67/69 ≈ 0.97 and θ̂1 = 10/63 ≈ 0.16. An

estimate of the rate ratio for success (cleared parasites at 12 months) is θ̂2/θ̂1 ≈ 6.12. The

rate ratio is often called the relative risk, but in this case the “risk” is the risk of getting

cured. A different expression of the same data would be to measure the ratio of the rates

of failures (those still having detectable parasites at 12 months). Let θ̂F2 = 2/69 ≈ 0.03

and θ̂F1 = 53/63 ≈ 0.84, then an estimate of the relative risk of failure is θ̂F1/θ̂F2 ≈ 29.0.

In this latter case the control group looks about 29 times worse than the treatment group,

while if we look at the rate ratios for success the treatment group looks only about 6 times

better than the control group. So how many times better treatment is than control depends

on which way we measure risk. This is a violation of symmetry equivariance. Despite this

the rate ratio is often used because it is easy to understand (see e.g., Coulibaly et al., 2009),

or because it has become the parameter of choice within a field so that its use facilitates

comparisons between studies.

The difference has symmetry equivariance. If we measured the difference in rates of

disease rather than the difference in rates of cure we get exactly the negative difference as

we might expect. Similar to the relative risk, the difference is often used because it is easy
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to understand. Additionally, the sample difference in rates is always defined, unlike the

ratio which is undefined when θ̂1 = θ̂2 = 0.

Figure 4 gives plots of the three statistics using θ̂2 and θ̂1 with n1 = n2 = 8. The

plots go from dark blue (θ̂2 is larger) to white (θ̂1 = θ̂2) to dark red (θ̂1 is larger), with

black denoting indeterminate. Because of the indeterminate black areas, the ordering of

the sample space for the ratio and odds ratio is not straightforward (see Section 4.3). The

ordering of the measures on the parameters themselves would give a continuous version of

Figure 4, and the black regions would reduce to points at (θ1, θ2) = (0, 0) or (1, 1). The

bottom panels show the lack of symmetry equivariance for the βr. Comparing the panel

for βor with the two different ratio panels, we see that the lower left hand corner of the

βor panel is similar to the lower left hand corner of β̂r = θ̂2/θ̂1. For small θ, β̂or is a good

approximation to β̂r. Similarly for both θ values close to 1, β̂or is a good approximation of

(1− θ1)/(1− θ2) (right bottom panel).

The odds ratio is the more complicated of the three measures, but it has some nice

properties. It is very important for the case-control design used to study rare diseases,

because the odds ratio of disease given exposure is equal to the odds ratio of exposure

given disease (see Breslow, 1996). Also for performing regression on binary observations,

logistic regression allows linear predictors to be used to model the log odds, and effects of

binary covariates can be expressed as odds ratios. An advantage of the odds ratio for the

two-sample binomial case is that by conditioning on the total number of successes in both

groups, the probability distribution reduces to a noncentral hypergeometric distribution

which is a function of βor. This is discussed more in Section 5.
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Figure 4: Four simple ordering functions. Dark blue means θ2 is much larger than θ1 and

dark red is the opposite. White means both treatments appear the same. The functions

are based on n1 = n2 = 8 and using functions of the sample proportions, θ̂1 = x1/n1

and θ̂2 = x2/n2. The sample space is depicted by a 9 × 9 grid of responses, ranked by

the ordering functions: difference in success proportions (upper left), odds ratio (upper

right), ratio of success proportions (lower left), and ratio of failure proportions (lower

right). Colors rank the functions from the highest values (dark blue) indicating larger

θ2, to middle values (white) indicating θ1 = θ2, to lowest values (dark red), with black

indicating no information.
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3 Properties of Methods

3.1 Defining a Matched Method

Once we choose an effect measure, we choose an appropriate method (an estimator, con-

fidence interval, and p-value function) for inferences. Deciding the estimator is not the

focus of this paper. We will not specify the estimator except to require that it is within

the confidence interval. We focus mostly on choosing the CI and p-value function. Except

in Section 9, we only consider methods that are valid (i.e., the CI and p-value are both

valid) and reproducible. Because we require reproducibility, the method based on the UMP

unbiased (and randomized) test is not allowed. Although one could define a method where

the p-value function and confidence interval are derived from different procedures, for focus

we will not consider those kinds of methods in this paper. We define a matched method

as one where its confidence interval is derived from its p-value function or vise versa. A

matched method is slightly different from a unified method. For example, as we have shown

in Section 1.3, for some p-value functions it is not possible to get a confidence interval to

give unified inferences. Loosely speaking, if we start with a valid p-value function, the

matching CI is the valid CI that gives unified inferences as much as is possible, and vice

versa if we start with a valid CI.

Here is a precise definition of a matched method. If we start with p(x, β0), an associated

confidence region is given by equation 1, and the matching CI is smallest interval that

contains that confidence region. In other words, if the confidence region has holes in it,

then those holes are “filled in”. On the other hand, if we start with (L,U) = CI(x, 1− α),

then the matching p-value function is the smallest α such that β0 is outside CI(x, 1 − a)

18



for all a ≥ α, or more precisely,

p(x, β0) =

 1 if A = ∅

minA otherwise,
(2)

where A ≡ A(x, β0) is the set

A(x, β0) = {α : β0 /∈ CI(x, 1− a)for all 1 > a ≥ α} .

3.2 Implications of Unified Inferences

Theorem 3.1 Consider a valid, reproducible, and matched method. The method has uni-

fied inferences

1. if and only if the CI is equal to the confidence region associated with the p-value, and

2. only if the CI is nested, and

3. only if the the p-value function is coherent (for one-sided p-values), or directionally

coherent (for two-sided p-values).

The formal proof of the theorem is in the Appendix. The theorem says we must have

nested CIs and coherent p-values in order to have unified inferences. These ideas are best

understood graphically. Figure 1 shows lack of directional coherence; for every β0 there is

only one p-value, and the two-sided p-value function is not unimodal. Similarly, Figure 3

shows lack of coherence. Figure 2 shows non-nestedness; for every α there is only one lower

limit, and the lower limit is not a monotonic function of the level.
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3.3 Directional Inferences

Typically, if a researcher finds a significant difference from the two-sided p-value suggesting

that β ̸= β0, they almost always are interested in interpreting the result in terms of whether

β > β0 or β < β0. In other words, the two-sided hypothesis test is often treated as a three-

decision rule: (1) fail to reject β = β0, (2) reject β = β0 and conclude β > β0, or (3) reject

β = β0 and conclude β < β0. If the two-sided p-value has directional coherence, then if we

reject H0 : β = β0 at level α, we can additionally reject at level α either H0 : β ≤ β0 (if

β0 < β̂) or H0 : β ≥ β0 (if β0 > β̂).

Consider comparing two unified methods, one with a central CI, and one with a non-

central CI. For the non-central method a two-sided hypothesis may be be slightly more

powerful, but if the non-central method is applied also to a subsequent one-sided hypothesis

(as in the three decision rule), it can be quite a bit less powerful than the central one. To

see this, start with a nested central CI, say (L,U), and pair it with its matching two-sided

p-value, say pC . By Theorem 3.1, this means that whenever the 100(1− α)% CI excludes

β0 then pC ≤ α, and we can reject H0 : β = β0 at level α. After rejecting the two-sided

hypothesis at level α, we can reject one of the one-sided hypotheses at level α/2; if β0 < L

we reject H0 : β ≤ β0, while if β0 > U we reject H0 : β ≥ β0. A non-central CI does not

allow one-sided rejections at the α/2 level. Freedman (2008) discusses this issue in terms of

clinical trials, and using these arguments as well as some Bayesian motivation recommends

performing two one-sided tests at the α/2 level, which is another way of describing the use

of central CI methods for three decision rules.

In summary, if we desire directional inferences, and we want to compare the power to

detect a one-sided effect in a fair way, then we need to compare a method with a two-sided

p-value and its matching 100(1 − 2α)% non-central CI, with a pair of one-sided p-values

and its matching 100(1−α)% central CI. This means that when comparing lengths of CIs,
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if directionality of effect is important, we should compare the length of a 100(1 − 2α)%

non-central CI with the length of a 100(1−α)% central CI. Because directionality is usually

important, our default recommendation is to use central confidence intervals and perform

three-sided inferences as described above.

4 Methods for Creating One-Sided Exact Uncondi-

tional Testing Procedures

4.1 Basic Procedure for Defining p-values

Suppose larger θ is better. We want to know if treatment 2 is better than treatment 1

(θ2 > θ1), and if so by how much. Let T (x) be a function of the data, where larger values

of T (x) indicate that treatment 2 is better than treatment 1, and T (X) is defined for all

possible values of X. For example, a simple T (x) is the difference in observed proportions

(see Figure 4 upper left). For this section and the next (Section 4.2), we require that T

is a function of x only. Later in Section 4.5 T may depend on α, and in Section 4.6 T

may depend on β0. Barnard (1947) outlined convexity conditions which ensure that larger

values of T suggest treatment 2 is better. Barnard’s convexity (BC) conditions are:

if x∗2 > x2 then T ([x1, x
∗
2]) ≥ T ([x1, x2])

and (3)

if x∗1 < x1 then T ([x∗1, x2]) ≥ T ([x1, x2]).

Even within functions that satisfy the BC conditions, there are many choices. In later

sections we explore choice of T further, but for now imagine the simple ordering function

of T (x) = θ̂2 − θ̂1 plotted in Figure 4a, which meets the BC conditions.
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Once we have decided on the ordering function, T , we can create valid unconditional

one-sided p-values: pU for testing the null HU0 (defined as H0 : β ≥ β0) and pL for testing

HL0 (H0 : β ≤ β0) using

pU(x, β0) = sup
θ:b(θ)≥β0

Pθ [T (X) ≤ T (x)]

and (4)

pL(x, β0) = sup
θ:b(θ)≤β0

Pθ [T (X) ≥ T (x)] .

These p-values are valid since

sup
θ∈Θ0

Pθ[p(X, β0) ≤ p(x, β0)] ≤ p(x, β0)

where Θ0 = {θ : b(θ) ≥ β0} for pU and Θ0 = {θ : b(θ) ≤ β0} for pL. Further, any other valid

p-values that retain the same ordering are inadmissible (that is, they have values that are

never less than the valid unconditional p-values and are greater for at least one x) (Lloyd,

2008, p. 333).

These valid one-sided p-values can be inverted to create two 100(1 − α/2) one-sided

confidence limits using

U(x) =


sup {β0 : pU(x, β0) > α/2} , if ∃ a β0

with pU(x, β0) > α/2

βmax otherwise

and (5)

L(x) =


inf {β0 : pL(x, β0) > α/2} , if ∃ a β0

with pL(x, β0) > α/2

βmin otherwise

where (βmin, βmax) = (−1, 1) for βd and (0,∞) for βr or βor. A central 100(1−α) confidence

interval is the union of the one-sided ones, (L(x), U(x)), and a central p-value is pC(x, β0) =
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min(1, 2pL, 2pU). These confidence limits are called exact unconditional (see e.g., Mehrotra

et al., 2003) or Buehler confidence limits (see Lloyd and Kabaila, 2003). Lloyd and Kabaila

(2003) and Wang (2010) show two results about these one-sided intervals. First, the lower

and upper one-sided confidence limits retain a logical ordering analogous to Barnard’s

convexity conditions. Specifically, (L,U) ∈ OT , where OT is the class of valid central

confidence intervals such that if T (x1) < T (x2) then L(x1) ≤ L(x2) and U(x1) ≤ U(x2).

Second, (L,U) calculated in this manner is the smallest confidence interval within OT . In

other words, any other valid central confidence interval (L∗, U∗) in OT must have L∗(x) ≤

L(x) and U(x) ≤ U∗(x) for all x ∈ X .

Barnard (1947) proposed a test he called the CSM test based on an ordering function

that starts from the most extreme point, and adds points as the ones that have the lowest

valid unconditional p-value among those that meet the BC condition and the symmetry

equivariance condition. The p-value function used could be the pC related to testing θ2 = θ1,

e.g., pC(x, 0) for testing βd = 0. Additionally, Barnard (1945) outlined the general exact

unconditional test, and those tests are sometimes referred to as “Barnard’s test” (see e.g.,

Sas, 2012; Cytel, 2010), but we avoid that terminology to avoid confusion with Barnard’s

CSM test. Röhmel and Kieser (2013) discussed one-sided exact unconditional tests using

Barnard’s CSM p-value ordering, except with breaking more ties to get higher power, an

idea discussed in the next section.

4.2 Improving Power by Breaking Ties: Refinement of Ordering

Functions

One important way to improve the power of some unconditional exact tests based on a

function T is to break any ties that exist in the ordering function. If T is an ordering
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function with ties, and T ∗ is an ordering function that gives the same ordering of T at

all the untied values and additionally breaks some ties, then we say T ∗ is a refinement of

T . Then the unconditional exact p-values formed with T ∗ are always less than or equal

to those formed with T (see Röhmel and Mansmann, 1999, p. 158). Similarly, one-sided

exact unconditional lower confidence limits formed using T ∗ are always at least as large as

the ones formed using T (Kabaila and Lloyd, 2006; Wang, 2010).

We describe one specific refinement or tie breaking algorithm for the difference in pro-

portions next, which as far as we are aware, has not been specifically described in the

literature and has not been available in software (although there are some closely related

methods). We can order within each set of tied values using Wald statistics for β̂d, i.e.,

ordering by

Z(x) =
β̂d√

v̂ar0(β̂d)
=

θ̂2 − θ̂1√
θ̂(1− θ̂)(1/(n1 + n2))

where θ̂ = (x1 + x2)/(n1 +n2). This leaves the ties for β̂d = 0, but otherwise defines points

with more precision as more extreme, where extreme is further away from zero. Not all

the values with β̂d ̸= 0 break all the ties. For example, consider the ties at β̂d = 5/8 that

happen at the x values [0, 5], [1, 6], [2, 7], and [3, 8], for n1 = n2 = 8. This method still

leaves tied the two pairs of points, {[0, 5], [3, 8]} and {[1, 6], [2, 7]}. These remaining ties we

argue should remain tied in order for the ordering to retain symmetry equivariance. Note

that this suggested ordering is similar, but not equivalent to just ordering the entire sample

space by Z(x) (as was studied in Mehrotra et al., 2003).

If we break the ties in this way, then the BC conditions are still met, because only

at the boundaries (where the ties are broken according to the BC conditions) do the ties

occur at two points xa and xb with xa1 = xb1 or xa2 = xb2. All of the other ties will not

have any xa1 = xb1 or xa2 = xb2 so they can be broken in any manner and the overall
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ordering function, T ∗, will meet the BC conditions. This is important for computation (see

Section 10). Further, the proposed T ∗ (tie-breaking on difference in proportions) does not

depend on α or β0 like some score test based methods (see Section 4.6) so avoids problems

with nesting and coherence.

4.3 Ordering Functions for Ratio and Odds Ratio

Performing exact unconditional tests on βr or βor is not straightforward. We consider βr

first since it is simpler. One problem is that if we observe x = [0, 0], this could occur with

high probability if the true ratio was 100 or if it was 1/100 as long as both θ1 and θ2 were

very small. So if T (x) is designed so that larger values suggest θ2 > θ1, it is not clear how

to define T ([0, 0]) if our interest is in βr.

Since x = [0, 0] gives us no information about βr, we must deal with that point in

a special way; we set the p-value at x = [0, 0] to 1 for tests of βr regardless of the null

hypothesis. This means that x = [0, 0] is placed “deepest” within the null. Following

equations 4, this implies T ([0, 0]) can be thought of as the largest value when calculating

pU(x, β0) and the smallest value when calculating pL(x, β0). A similar issue applies to the

odds ratio, except in that case in addition to x = [0, 0], the point x = [n1, n2] also has no

information about βor.

For clarity, we rewrite equations 4 applied to all three parameters. Let XI denote the

set of X values with information about β. Then if x /∈ XI set pU(x, β0) and pL(x, β0) to 1,

otherwise let pU(x, β0) be

sup
θ:b(θ)≥β0

Pθ [T (X) ≤ T (x)|X ∈ XI ]Pθ [X ∈ XI ]
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and analogously, let pL(x, β0) be

sup
θ:b(θ)≤β0

Pθ [T (X) ≥ T (x)|X ∈ XI ]Pθ [X ∈ XI ] .

Since we never reject when x /∈ XI , these definitions give valid p-values, and additionally

when x /∈ XI we do not need to define T (x).

The simple ordering function by the estimate of βr or βor (even when using a tie breaking

ordering similar to what was done for βd) is not very powerful (see Section 12), and is not

recommended. Typically, we order using a score function (see Section 4.6) since it gives

more reasonable power.

4.4 Other Improvements: E+M and Berger-Boos

Another method to apparently improve the ordering statistic for any efficacy parameter

(difference, ratio, or odds ratio) is the estimated and maximized (E +M) p-value (Lloyd,

2008). In this method, we replace an ordering statistic, T , with T ∗, where T ∗ is an es-

timated p-value when testing HL0 (or the negative estimated p-value when testing HU0).

We estimate the p-value by plugging in θ̂0 instead of taking the supremum of θ under the

null, where θ̂0 is the maximum likelihood estimator of θ ∈ Θ0. For example, the approx-

imation for pL in expression 4 uses p̂L(x, β0) = Pθ̂0
[T (X) ≤ T (x)]. Then we “maximize”

using T ∗(x) = p̂L(x, β0) instead of T as the ordering function, that is, we calculate the ex-

act conditional p-value using expression 4 by taking the supremum. Lloyd (2008) studied

this method and observed that when T ∗ (the approximate p-value) is used as the order-

ing statistic, the resulting exact unconditional p-value is generally smaller than the exact

unconditional p-value on T . The process can be repeated (replace T ∗ by its approximate

p-value), but the additional reduction appears to be minimal.
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Berger and Boos (1994) introduced a popular method that tends to reduce exact uncon-

ditional p-values. Instead of taking the supremum over the entire null hypotheses parameter

space take the supremum only over Cγ, a 100(1− γ)% confidence set of θ restricted to be

in the null space, then add γ to ensure validity. This is usually done by reexpressing the

parameter space (θ1, θ2) as (β, ψ), where ψ is a nuisance parameter, then defining Cγ as the

intersection of θ ∈ Θ0 and the set of θ values with ψ in its 100(1− γ)% confidence interval.

A Berger-Boos version of pU of expression 4, uses

pUγ(x, β0) = γ + sup
θ∈Cγ

Pθ [T (X) ≥ T (x)] .

This is not optimal, since we may be able to improve it by using pUγ(x, β0) as an ordering

function. Nevertheless, it usually provides some reduction in p-values (see e.g., Lloyd,

2008).

4.5 Ordering Functions That Depend on Significance Level

Kabaila and Lloyd (2003) showed that for one-sided 100(1 − α/2)% exact unconditional

upper confidence limit, the ordering function, T , that maximizes the asymptotic efficiency

is an approximate 100(1− α/2)% one-sided upper confidence limit itself. This means that

you would use a different ordering function for the upper and lower limit, and in fact would

use a different ordering function for different confidence levels.

Wang (2010) and Wang and Shan (2015) also proposed an ordering function to give

the smallest CI, and the calculation of the ordering function itself is iterative and quite

involved, similar to the CSM test of Barnard (1947). The precise definition of the ordering is

notationally cumbersome, but the idea is roughly as follows. Consider the lower 100(1−α/2)

one-sided limit. Start from the most extreme point x = [0, n2]. Then add points one at

a time, picking the point, xa, that gives the largest L(xa, 1 − α/2) and belongs to the
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set of closest neighboring points with the already included points, where closest neighbor

is defined in terms of the BC conditions. The algorithm ensures that the lower limit

function meets the BC conditions. Because each added L(x) value is as large as possible,

this ordering ensures that if the resulting ordering function T gives the finest partition

(there are no ties), then any valid 100(1− α/2)% one-sided lower limit that meets the BC

conditions and uses T for ordering, say L∗, has L∗(x) ≤ L(x) for all x (see Wang, 2010;

Wang and Shan, 2015).

Although we obtain this optimality property, the price is that the ordering function

depends on α. Thus, we can have different ordering functions for different α, which can

lead to non-nestedness (see Figure 2).

4.6 Ordering Functions That Depend on Hypothesis Boundaries

Basing the ordering statistic on a score test can increase the power over using simple Wald-

type Z statistics (see Chan, 2003). Although this increased power has been shown in several

simulation studies, it is not clear whether the increase in power is due to the fewer ties for

the score test, or from some other difference between the ordering statistics. A problem

with the score statistic is that the induced ordering may change based on the β0. This can

produce non-coherence as was shown in Section 1.3 and Figure 3.

5 One-Sided Conditional Exact Tests

Yates (1984) argues that conditioning on total number of failures is the proper strategy for

this problem, and most of the discussants of the paper agreed with this (including Barnard,

who first suggested the unconditional approach). One of the main reasons that others

had recommended the unconditional approach is an overemphasis on the fixed significance
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level and the resulting power, which when used leads to more power for the unconditional

tests because the sample space has more values and hence is less discrete. Yates (1984)

argues (in his Section 9) that over reliance on the nominal significance level is not a good

reason to prefer the unconditional test, and that p-values should be reported instead of

accept/reject decisions. Yates (1984) also argues that we should condition on the total

number of events (X1+X2), because that statistic is approximately ancillary to the effects of

interest. Recent reviews (e.g., Lydersen et al., 2009) have emphasized power arguments, and

we review the choice of test from that perspective in Section 12. Historically, conditional

tests have been important because of their much smaller computational burden compared

to unconditional tests. The computational burden for unconditional tests has become less

important, although for some applications it may be a non-trivial concern (e.g., big data

applications with small sample sizes but very many covariates being tested).

For the unconditional one-sided exact method, to calculate p-values we need to take the

supremum of the probability that T (X) is more extreme than the observed T (x) over the

parameter space Θ0 (see e.g., equation 4). This is a difficult calculation (see Section 10).

An alternative method is to condition on the sum s = x1+x2, and calculate the conditional

probability. The resulting conditional distribution is the extended hypergeometric distri-

bution (Johnson et al., 2005) also called Fisher’s noncentral hypergeometric distribution

(Fog, 2008), which depends only on βor. Additionally, because s is fixed we can write the

ordering function in terms of X2 only. In fact, the only unique ordering function that makes

sense and meets the BC conditions is X2 itself (ordering on n1 − X1 will be equivalent).

So this simplifies the calculations if the effect measure is βor. For example, for testing

H0 : βor ≥ β0 use

pUc(x, β0) = sup
θ∈Θ0

Pθ [T (X) ≥ T (x)|S] = sup
βor:βor≥β0

Pβor [X2 ≥ x2|S]

= Pβ0 [X2 ≥ x2|S] , (6)
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where the last step comes because the conditional distribution is monotone in βor (Mehta

et al., 1985). The other conditional one-sided p-value, pLc is calculated similarly except by

reversing the inequality. These conditional p-values for testing H0 : βor = 1 (or equivalently

H0 : θ1 = θ2) are Fisher’s exact one-sided p-values. We calculate the central confidence

intervals on βor using equation 5 except using the conditional exact one-sided intervals

instead of the unconditional ones.

Now consider the other measures, βd and βr. At the boundary of equality, the one-sided

hypotheses are equivalent. For example, the following three null hypotheses give equivalent

Θ0: (odds ratio) H0U : βor ≥ 1, (ratio) H0U : βr ≥ 1, and (difference) H0U : βd ≥ 0.

Analogously for the other one-sided p-value. But for boundaries not representing equality,

Θ0 changes depending on the effect measure. The simplification of the p-value calculation

only works for the odds ratio. For example, for the difference in proportions (i.e., β = βd)

there is not simplification analogous to equation 6. Figure 5 shows that the exact one-

sided conditional confidence limit on βd is not efficient, because the conditional distribution

depends on βor. The upper 100(1 − α/2)% limit for βd, say Ud, based on the upper limit

for βor, say Uor, is (see Santner and Snell, 1980, Section 2)

Ud =

 0 if Uor ≤ 1
√
Uor−1√
Uor+1

if Uor > 1

There are better ways to get confidence intervals on βd and βr that provide matching

inferences for the one-sided p-values with β0 representing θ1 = θ2. We show these in the

next section.

6 Melded Confidence Intervals

Fay et al. (2015) developed melded confidence intervals, a general method for creating
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Figure 5: 97.5% Confidence region based on one-sided conditional test of odds ratio (gray

shaded area). Data is x1/n1 = 4/12 and x2/n2 = 8/15. Upper 97.5% exact conditional

limit on βor is U = 2.664 (dotted line) and on βd is U = 0.240 (solid line). The confidence

region based on the upper limit for βd is the gray region plus the white space between

the dotted and solid line. We see that because the conditional probability depends on βor

alone, that white space represents the lack of efficiency of basing the confidence region on

βd instead of βor.
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confidence intervals for the two-sample case, that is closely related to the confidence distri-

bution (CD) approach (Xie and Singh, 2013). Roughly, the 100(1−α)% melded confidence

interval is a central confidence interval that takes the middle 100(1− α)% of a function of

random variables, each created from one-sided confidence intervals.

Let Lθa(x, 1− α/2) and Uθa(x, 1− α/2) be exact nested 100(1− α/2)% one-sided con-

fidence limits, for θa for a = 1, 2. The lower and upper CD random variables for group a

are WLa = Lθa(x, Aa1) and WUa = Uθa(x, Aa2), where Aai are independent uniform random

variables. This gives, WLa ∼ Beta(xa, na − xa + 1) with expectation xa/(na + 1), and

WUa ∼ Beta(xa+1, na−xa) with expectation (xa+1)/(na+1), and using limits of param-

eters going to zero we define Beta(0, n + 1) as a point mass at 0 and Beta(n + 1, 0) as a

point mass at 1. If the responses were normally distributed, then the lower and upper CD

random variables would be identical, but for the binomial case (and for discrete random

variables in general) the lower and upper CD random variables (CD-RVs) are different – the

lower CD-RV is stochastically smaller than the upper CD-RV. To get a melded confidence

intervals on b(θ), Fay et al. (2015) require that b(θ) is a monotonic function of the param-

eters. Suppose β = b(θ) is increasing in θ2 and decreasing in θ1, such as our examples: βd,

βr and βor. Then the 100(1− α)% (two-sided) melded confidence interval is given by

(q {b([WU1,WL2]), α/2} , q {b([WL1,WU2]), 1− α/2}) .

where q(Y, a) is the ath quantile of a random variable Y . The interval is designed conser-

vatively by using [WU1,WL2] for the lower limit, but [WL1,WU2] for the upper limit. Fay

et al. (2015) conjectured that if the one-sample confidence interval procedures are valid,

central, and nested, and β(θ) is monotonic within each parameter, then the melded con-

fidence interval is valid, nested and central. Some mathematical results, simulations in

several situations, and extensive numeric calculations in the binomial case supported this

conjecture. A rigorous proof of the conjecture is still needed.
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Let pUm(x, β0) and pLm(x, β0) be the one-sided melded p-values, the p-values that match

with the one-sided melded confidence limits. Then for the binomial case, Fay et al. (2015)

showed that the one-sided melded p-values equal the exact one-sided conditional p-values

when testing the null with margin β0 which implies θ1 = θ2. For example, for testing

H0 : βd ≥ 0, we have pUm(x, 0) = pUc(x, 0), and for testingH0 : βr ≥ 1, we have pUm(x, 1) =

pUc(x, 1). This means that the melded confidence intervals match the p-values from the

one-sided Fisher’s exact test.

The melded CIs for βor are very close to the exact conditional ones, but the melded CIs

for βd are more efficient (lower are larger, and upper are smaller) than the exact conditional

ones (see Figure 6).

7 Noninferiority and Equivalence Hypotheses

Two other types of hypotheses are noninferiority and equivalence hypotheses. Suppose we

are comparing two treatments, and larger β means that the new treatment is better than the

standard one. Let β0 denote θ1 = θ2 and define an equivalence region as βML
< β0 < βMU

.

For β ∈ (βML
, β0), although the standard treatment is better, the difference between the

two is not substantial enough to be of practical importance. When we reject the one-sided

hypothesis, H0 : β ≤ βML
versus H1 : β > βML

, we declare the new treatment noninferior.

This is just an “alternative is greater” one-sided hypothesis already discussed in Section 1.1.

The equivalence hypothesis, however, is qualitatively different,

H0 : β ≤ βML
or βMU

≤ β

H1 : βML
< β < βMU

.

Just as the two-sided hypothesis is often treated as a three decision rule (see Section 3.3),
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Figure 6: Lower and Upper limits associated with 95% central confidence intervals by

exact conditional method and melding method. Simulated data where na is simulated

from uniform on 1 to 100, and xa is uniform on 0 to na, 1000 replications. Calculation used

the exact2x2 R package for melded confidence limits and fisher.test from the stats package

for the exact conditional limits. The limits for βor agree well, except for some extreme

data (e.g., x1/n1 = 1/68 and x2/n2 = 57/61) perhaps caused by numeric issues in the

computation, while the limits for βd show that the melded are smaller intervals (lower is

larger, upper is smaller).
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the statement after testing an equivalence hypothesis may be more expansive than either

reject or fail to reject the non-equivalence. Let (L,U) be a valid central nested 100(1−α)%

CI. Then we can make the following declarations based on the relationship between (L,U)

and βML
and βMU

:

• if βML
< L < U < βMU

declare equivalence at level α,

• if βML
< L < βMU

< U declare noninferiority at level α/2,

• if βML
< βMU

< L < U declare (substantial) superiority at level α/2, or

• if L < U < βML
< βMU

declare (substantial) inferiority at level α/2.

The last three statements are valid because of the centrality (see e.g., Goeman et al., 2010,

for a similar statement).

8 Non-central Confidence Intervals and Associated Tests

Let Tts(x) ≡ Tts(x, α, β0) be an ordering distribution for testing the two-sided null H0 :

β = β0, with smaller values suggesting β further away from the null. Then we can create

exact unconditional two-sided p-values using

pts(x, β0) = sup
θ∈Θ(β0)

Pθ [Tts(X) ≤ Tts(x)]

and exact conditional two-sided p-values using

pts(x, β0) = sup
θ∈Θ(β0)

Pθ [Tts(X) ≤ Tts(x)|S = s] .

which simplifies to

pts(x, β0) = Pβ0 [Tts(X) ≤ Tts(x)|S = s] , (7)
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if β = βor.

For example, consider Tts(x, β0) = f(x, β0), where f is the probability mass function for

the extended hypergeometric distribution with parameter βor = β0. Then the associated

exact conditional p-value is the usual Fisher’s exact test, which we call the Fisher-Irwin

test since it was proposed by Irwin (1935) and to distinguish it from the central Fisher’s

exact test created by doubling the minimum of the one-sided Fisher’s exact p-values. Using

Fisher’s exact p-values (either Fisher-Irwin or central version) as an ordering function in

an unconditional exact test gives a version of Boschloo’s test. Boschloo (1970) showed that

using the Fisher-Irwin p-values in this way is uniformly more powerful than the Fisher-Irwin

test. This superiority in power holds for both one-sided tests and central tests Lydersen

et al. (2009).

Blaker (2000) studied non-central confidence sets that always are subsets of the central

confidence sets in one parameter distributions. To translate into this problem, we consider

only the conditional distribution based on S = s and β = βor. Start with T (x) = x2, a

one-sided ordering function for the conditional problem (see Section 5). Define

γ(x, β) = min {Pβ[X2 ≤ x2|S = s], Pβ[X2 ≥ x2|S = s]} .

Let the two-sided ordering function be

Tts(x, β) = Pβ [γ(X, β) ≤ γ(x, β)|S = s] .

Then the two-sided p-value is pts(x, β0) from equation 7, and the associated 100(1 − α)%

confidence region is

Cts(x, 1− α) = {β : pts(x, β) > α} .

Then Blaker (2000) showed that this gives smaller confidence sets than the central CIs.

Specifically, Cts(x, 1 − α) ⊂ Cc(x, 1 − α), where Cc is the exact conditional central CI
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using the one-sided ordering function T (x) = x2. Let the 100(1−α)% matching confidence

interval to pts be the smallest interval that contains Cts.

Agresti and Min (2001) showed that if one wants to create two-sided CIs with smaller

length, it is generally better to invert p-values from two-sided hypothesis tests that are not

central. This makes sense because centrality is a restriction, and two-sided tests without

that restriction will leave room for improving CI length. For the two-sample binomial

problem, basing Tts(x, β0) on score tests gives good CI length; see Chan and Zhang (1999)

for βd and Agresti and Min (2002) for βor. Despite this apparent improvement, if directional

inferences are needed then central confidence intervals are recommended (see Section 3.3).

9 Mid-p Methods: Improving Accuracy by Giving Up

Validity

The mid-p value is a modification of a p-value for discrete data. Instead of calculating the

probability of observing equal or more extreme responses, the mid-p value is 0.5 times the

probability of equality plus the probability of more extreme. For example, the conditional

exact test of equation 6 becomes

Pβ0 [X2 > x2|S] +
1

2
Pβ0 [X2 = x2|S] .

Hwang and Yang (2001) gave some optimality criteria for the mid-p approach applied to one

parameter situations, which applies to the conditional test using βor since the conditional

probability is completely described by only the βor parameter. They show that for one-sided

or two-sided hypothesis tests, the loss based on squared error between an indicator that

β ∈ {b(θ) : θ ∈ Θ0} and the p-value function, and shows that for all β ∈ {b(θ) : θ ∈ Θ1}

(and β = β0) the expected loss is less than or equal to (strictly less than) the expected
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loss from any randomized exact p-value function (Theorem 3.3 and 4.3 with Yang et al.

(2004)). Fellows (2010) showed the minimaxity under the squared error loss and linear

loss, and also showed that of all non-randomized ordered decision rules, the mid-p version

is the only one that has expectation 1/2 under point null.

10 Computational Issues

Overall, the conditional p-values are much easier to calculate than the unconditional ones,

since they do not require taking the supremum over the null space. The melded confidence

intervals allow matching CIs to conditional tests of θ1 = θ2, and are very quick to calculate,

since they use numeric integration. There may be some precision issues in the numeric

integration for extreme data sets.

The main computational speed issues are mostly with respect to the unconditional

tests, since they require estimating the supremum. Röhmel and Mansmann (1999, p. 161)

showed that for ordering statistics, T , that meet the BC conditions, the supremum in the

p-value calculation is on the boundary between the hypotheses. For example,

sup
θ∈Θ0

Pθ [T (X) ≥ T (x)] = sup
θ:b(θ)=β0

Pθ [T (X) ≥ T (x)] .

For example, the score statistic on βd (Farrington and Manning, 1990), has been shown

to follow the BC conditions for fixed β0 (Röhmel, 2005). Further, if T meets the BC

conditions and does not depend on β0, then Theorem 3.1 of Kabaila (2005) shows that the

exact unconditional one-sided p-values based on T , are either nonincreasing (for pU(x, β0))

or nondecreasing (for pL(x, β0) in β0 for fixed x. This property means that for these p-

values, the associated 100(1− α/2) one-sided confidence intervals can be easily calculated

by finding the value β0 where the p-value equals α/2.
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Calculation using Barnard’s CSM p-value ordering can be very slow, because determin-

ing the ordering itself requires p-value calculation. Röhmel and Kieser (2013) discussed

one-sided exact unconditional test using Barnard’s CSM p-value ordering, except with

breaking ties in a manner that does not worry about symmetry equivariance. Their addi-

tional contribution was to not worry about the exact ordering for very small p-values. This

can speed up the calculations substantially.

Table 1 gives a review of the different methods, their properties of centrality and unified

inferences, as well as approximate ranking of computational speed and power. The last

column gives some software availability for the methods; it is not a comprehensive list, and

only considers SAS 9.4, R (with packages), and StatXact 11.

11 Connection to Causal Inference

Suppose there is a population of interest with N individuals. The jth individual has two

potential binary outcomes of interest, Yj(1) would be the outcome if the individual were to

get treatment 1, and Yj(2) would be the outcome if the individual were to get treatment

2. Let Yj = [Yj(1), Yj(2)]. Then there are 4 types of individuals with respect to these

potential outcomes, those with:

Yj = [0, 0] (always fail),

Yj = [1, 1] (always succeed),

Yj = [1, 0] (succeed on treatment 1 only), or

Yj = [0, 1] (succeed on treatment 2 only).

Let the number of individuals in each of the 4 types be respectively, N00, N11, N10, and N01.

Let θ1 = (N11 + N10)/N and θ2 = (N11 + N01)/N . Presenting the data this way implies
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that the treatment one subject receives does not affect the responses of other subjects,

and there is only one treatment effect for each type of treatment. (This is the stable unit

treatment value assumption, see e.g., Imbens and Rubin, 2015, Section 1.6).

Consider the following type of study.

Step 1: Define the study population as a simple random sample of size n = n1 + n2 from

the population of interest (of size N). Let i1, . . . , in be the indices for the individuals

in the study population.

Step 2: Randomly assign n1 of the study subjects to treatment 1, and n2 to treatment 2.

Let wih be the treatment assigned to the hth individual in the study.

Step 3: Apply assigned treatments and observe responses; for the hth individual in the

study observe Yih(wih).

Let Xa =
∑n

h=1 Yih(a)I(wih = a). If we treat N as infinity, then we can treat X1 ∼

Binomial(n1, θ1) and independentlyX2 ∼ Binomial(n2, θ2). Further, the parameters βd, βr

and βor have causal interpretation. For example, βd in this situation is called the average

causal difference (or average causal effect). Thus, all the previous results can be interpreted

as causal inferences.

Randomized clinical trials typically use a convenience study population based on some

inclusion criteria based on ethical risks to study subjects and other practical considerations,

and they rarely if ever take a simple random sample from the population of interest (i.e.,

they rarely do Step 1). Because of this, some suggest basing causal inferences on study

specific parameters that are defined only for the individuals included in the study (Robins,

1988; Rigdon and Hudgens, 2015; Li and Ding, 2016; Ding and Dasgupta, 2016). Let

the individuals selected (not necessarily randomly) for inclusion into the jth study be

i1j, . . . , inj. Let N00j, N11j, N10j and N01j be the number of individuals in that study in
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each of the 4 types of potential outcomes. Then the study specific parameters of interest

are θ1j = (N11j + N10j)/n and θ2j = (N11j + N01j)/n. The finite population average

causal difference for the jth study is βdj = θ2j − θ1j. If we had randomized individuals to

treatment, then we can get confidence intervals for study specific parameters (such as βdj

and the related ones for ratios, βrj, and odds ratios, βorj) using only assumptions about

the randomization. This is called randomization inference or Neymanian inference (Rigdon

and Hudgens, 2015; Li and Ding, 2016; Ding and Dasgupta, 2016).

Scientifically, we are usually interested in two aspects of the study (see e.g., Kempthorne

and Doerfler, 1969; Fay and Proschan, 2010). First, is there a treatment effect on the study

population itself (internal inferences)? And second, is there a similar treatment effect on

the population of interest (external inferences)? The advantage of the randomization in-

ference is that it requires no assumptions about how the study sample was obtained in

order to make valid internal inferences. The disadvantage is that those inferences are study

specific inferences (e.g., inferences about βdj). Alternatively, we can make the convenience

assumption that the study population acts similarly to a simple random sample from the

population of interest, and use our study data to make inferences about the population

parameters (e.g., βd). This has the advantage that our inferences are more generally ap-

plicable, but has the disadvantage that we have essentially assumed away the problem of

generalizing the study specific inference to the external population of interest. For more

discussion on this issues see Robins (1988) (for observational studies) and Imbens and

Rubin (2015, Chapter 6) (for randomized experiments).
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12 Power and Efficiency Comparisons

A comprehensive simulation or calculation comparing the different methods with respect

to power or efficiency is beyond the score of this review. Here we review a few of the best of

those types of papers and add an example and a couple of graphical calculation results to

supplement the previous literature on the topic. In essence this section gives some detailed

justification for the rough power/efficiency classifications listed in Table 1.

In general conditional tests (e.g., Fisher’s exact tests) are less powerful than the best

of the unconditional tests, because the latter tests are less discrete (Lydersen et al., 2009).

Mart́ın Andrés and Silva Mato (1994) provide a very comprehensive power comparison of

several valid unconditional tests (including tests based on either an ordering function of

the difference in sample proportions, or on some test-based ordering functions related to

Fisher’s exact p-value, the unpooled Z test, or Barndard’s CSM test). They only considered

ordering functions that do not depend on α or β0 (since they only consider power to show

θ2 > θ1 [i.e., with β0 = 0 for the difference or β0 = 1 for the ratio or odds ratio] the ordering

functions automatically do not depend on β0). Mart́ın Andrés and Silva Mato (1994) based

power comparisons on expected power assuming bivariate uniformly distributed (θ1, θ2).

They found that Barnard’s CSM test was the most powerful on average, and that ordering

by either the unpooled Z statistics for the difference in means or the Fisher’s exact p-values

(i.e., a Boschloo-type test) gave the next best power. Mart́ın Andrés and Silva Mato (1994)

did not include a pooled Z test, but Mehrotra et al. (2003) did, and they showed that the

pooled Z test can have much better power with unequal sample sizes. So in general we can

recommend ordering by the pooled Z instead of the unpooled Z. Since Barndard’s CSM

test is difficult to calculate, Martın Andrés et al. (2002) compared many approximations to

that value. They concluded that the mid-p Fisher’s p-value was the best approximation to
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the CSM test, although it could be conservative for very small samples. Hirji et al. (1991)

did extensive calculations finding the type I error rate for the exact conditional mid-p one-

sided and two-sided (Fisher-Irwin-type) tests. They found that out of 3125 sample size and

parameter situations (all with θ1 = θ2), typically 90-95% of both types of the mid-p p-value

when used to test at a 5% significance level, had type I error rates less than or equal to

5%. Further, Lydersen et al. (2009) stated that the mid-p version of the Fisher-Irwin test

approximates the Fisher-Boschloo test well, and the latter test (or the exact unconditional

test on Pearson’s chi-squared test) was their recommendation.

For confidence intervals, we focus on two papers. Chan and Zhang (1999) compared

unconditional confidence intervals based on estimates of or tests on the difference: the

difference in proportions, the unpooled Z statistic, the score statistic (which they called

the δ-Projected Z statistic), and the likelihood ratio statistic. They tried all with and

without the Berger and Boos (1994) adjustment. They showed the score statistic with

no adjustment generally gave smaller average confidence interval length. Santner et al.

(2007) did a very comprehensive set of calculations for βd confidence intervals, calculating

the expected coverage and confidence interval length for a 100 × 100 grid of values of

(θ1, θ2). They compared three valid methods and two approximate methods, including the

unconditional method based on a two-sided score test, the unconditional method based on

two one-sided score tests, and an approximate method of Coe and Tamhane (1993). The

results show that of the valid methods, the unconditional method based on the two-sided

score test statistic had the lowest expected length, while the central unconditional method

based on two one-sided score tests had larger expected length. However, if directional

inferences are important, then the proper comparison should be the former method using

100(1 − 2α)% intervals compared to the latter method using 100(1 − α)% intervals (see

Section 3.3). Further, the score tests may lack coherence (see Figure 3). Santner et al.
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(2007) ended up recommending the approximate method of Coe and Tamhane (1993), which

had smaller length confidence intervals and gave coverage above the nominal except in less

than 0.6% of the cases. Fagerland et al. (2015), also recommends for small samples the

exact unconditional confidence intervals with the ordering function the two-sided score test

statistic. Fagerland et al. (2015) mentions using one-sided tests if direction is important.

We now compare the score tests to some of the tests introduced in this paper. Between

the unconditional tests applied to βr and βor, the ordering based on score tests or the

ordering based on one-sided mid-p Fisher’s exact p-values perform much better than or-

dering by the estimates with tie breaks as in Section 4.3. For example, with n1 = n2 = 20,

θ1 = 0.4, θ2 = 0.8, and a one-sided 0.025 significance level, the power is 73% for score-

based or mid-p Fisher-based tests of both βr and βor, but it is very small for the test that

orders by estimates with tie breaks (power ≈ 0 for βr and power ≈ 1% for βor). We get a

slight increase in power for the latter tests when we use Berger and Boos adjustment with

γ = 10−6 (power is 11% for βr and 16% for βor). In contrast, for βd in that example all

three methods of ordering with or without the Berger-Boos adjustment give 73% power.

In Figure 7 we compare powers on the two-sided 0.05 level central tests that βd = 0.

Powers are calculated on a grid 99 × 99 grid of values of (θ1, θ2). We plot the difference

in powers between all pairs of three tests: two unconditional exact tests (one based on the

score test for the difference in proportions, and one based on the difference in proportions

with a tie break) and the conditional test (the central Fisher’s exact test). We find, as

expected, that the unconditional tests do better, and that the simple method with a tie

break does well when the sample sizes are not equal (see e.g., Mehrotra et al., 2003, for a

different set of simulations showing a similar result for the two-sided test).

In Figure 8 we compare the unconditional exact tests ordered by score statistics (on

either βd = 0, βor = 1, or βr = 1) compared to the unconditional exact tests based on the

44



Score vs Simple TB

n1 = 12  and  n2 = 12
θ1

θ 2

0.2

0.4

0.6

0.8

0.2 0.6

−0.4

−0.2

0.0

0.2

0.4

Score vs Fisher

n1 = 12  and  n2 = 12
θ1

θ 2

0.2

0.4

0.6

0.8

0.2 0.6

−0.4

−0.2

0.0

0.2

0.4

Simple TB vs Fisher

n1 = 12  and  n2 = 12
θ1

θ 2

0.2

0.4

0.6

0.8

0.2 0.6

−0.4

−0.2

0.0

0.2

0.4

n1 = 23  and  n2 = 23
θ1

θ 2

0.2

0.4

0.6

0.8

0.2 0.6

−0.4

−0.2

0.0

0.2

0.4

n1 = 23  and  n2 = 23
θ1

θ 2

0.2

0.4

0.6

0.8

0.2 0.6

−0.4

−0.2

0.0

0.2

0.4

n1 = 23  and  n2 = 23
θ1

θ 2

0.2

0.4

0.6

0.8

0.2 0.6

−0.4

−0.2

0.0

0.2

0.4

n1 = 12  and  n2 = 30
θ1

θ 2

0.2

0.4

0.6

0.8

0.2 0.6

−0.4

−0.2

0.0

0.2

0.4

n1 = 12  and  n2 = 30
θ1

θ 2

0.2

0.4

0.6

0.8

0.2 0.6

−0.4

−0.2

0.0

0.2

0.4

n1 = 12  and  n2 = 30
θ1

θ 2

0.2

0.4

0.6

0.8

0.2 0.6

−0.4

−0.2

0.0

0.2

0.4

Figure 7: Comparison of powers for testing θ1 = θ2 using central tests at the two-sided

0.05 level. The three tests compared are “score”= unconditional exact test based on the

score test of the difference in proportions, “simple TB”= unconditional exact test based

on the difference in proportions using a simple tie-break (see Section 4.2), and “Fisher”=

tests based on central Fisher’s exact test. For columns labeled Test 1 vs Test 2, the result

is power of Test 1 minus Power of Test 2, so that positive values (pink and gray) indicate

that Test 1 is more powerful. White indicates that powers are within 0.025 of each other.
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mid p-values from the one-sided Fisher’s exact test. We find that the latter test is generally

more powerful.

13 Recommendations

Some recommendations:

1. We should almost always use central confidence intervals with either a central p-value,

or the minimum of the one-sided p-values. Although using non-central two-sided CIs

can slightly decrease CI length, that advantage comes at a cost in terms of allowable

one-sided inferences. Since after rejecting a two-sided test we usually care about the

direction of effect, non-central CIs are not routinely recommended.

2. It is usually not useful to maximize the power or minimize the confidence interval.

It comes at the price of increased computational burden and will lead to incoherent

p-values and non-nested CIs.

3. For fast calculations use the one-sided conditional exact tests and the melded confi-

dence intervals.

4. For more power use the unconditional one-sided valid p-values and associated central

CIs. For inferences on βd we can order based on the difference in sample proportions,

except break ties while maintaining the BC conditions, and do not let the ordering

function depend on β0 or α. This will ensure monotonicity of the p-values as a function

of β0, allowing for relatively fast calculations, and avoiding incoherence and non-

nestedness. For inferences on βr and βor, using the simple function with a tie breaking

ordering will have a much smaller power than the score method or ordering based
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Figure 8: Power of unconditional exact score test minus power of unconditional exact test

based on ordering by Fisher’s exact test one-sided mid p-value. Negative values (yellow and

blue) denote parameter values in which the latter test is more powerful. The unconditional

exact score tests are defined based on testing either H0 : βd = 0 (first column), H0 : βor = 1

(second column), or H0 : βr = 1 (third column). White indicates that the two powers are

within 0.025 of each other. Additional calculations with n1 = 12, n2 = 12 showed nearly

equal powers (all white) for all three columns and are not plotted.
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on one-sided mid-p Fisher’s exact p-values. The score method introduces problems

with incoherence or non-nestedness, while the mid-p Fisher p-value ordering does not.

Because the latter method only uses the mid p-values for ordering within the exact

unconditional test framework, the resulting p-values are valid. Further, for inferences

on βd, the mid-p ordering meets the BC conditions and is relatively fast to calculate.

5. If validity is not vital, then the mid-p conditional tests are a good approximation

to the more powerful of the unconditional exact ones. Additionally, with a large

proportion of situations with θ1 = θ2, the mid-p conditional tests still have type I

error rates less than the nominal value.
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Appendix: Proof of Theorem 3.1

Proof of statement 1 :

(Unified Inferences) ⇒ (CI = C): If the confidence region associated with a p-

value is not an interval, then there must be an α and β0 such that p(x, β0) ≤

α and β0 ∈ CI(x, 1 − α), which contradicts the unified inferences, therefore

CI(x, 1− α) = C(x, 1− α).

(CI = C) ⇒ (Unified Inferences): If the confidence region associated with the p-

value is the matching confidence interval, then the inferences are unified by

definition (equation 1).

Proof of statement 2 , (unified inferences) ⇒ (nested CI): We show the contrapostive.

If a method has non-nested CIs, then there exists some α1 < α2 and some β0 such

that β0 /∈ CI(x, 1−α1) and β0 ∈ CI(x, 1−α2). If the method had unified inferences,

then p(x, β0) ≡ p ≤ α1 and p > α2. This leads to the contradiction, p ≤ α1 < α2 < p,

so the method must not have unified inferences, and we have proven the result.

Proof of statement 3 , (Unified Inferences) ⇒ (Coherence): From statement 2, the uni-

fied inferences imply nested CIs. For one-sided p-values, the unified inferences with

the nested CIs imply that the p-values are non-decreasing as the null space expands

(e.g., β0 gets larger when H0 : β ≤ β0), and hence are coherent by definition. For

two-sided p-values, because of unified inferences and nested CIs, the p-values are in-

creasing (i.e., non-decreasing) as 1 − α decreases. This is directional coherence by

definition.
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